###
DOI:
有色金属工程:2020,(1):87-94
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
基于RS-SCA-PPR的充填管道失效风险预测精度研究
(西安建筑科技大学)
Precision of Failure Risk Prediction of Filling Pipeline Based on RS-SCA-PPR
LUO Zhengshan1, YAO Mengyue2,3,4,5, WANG Xiaowan2,3,4,5
(1.Xi''an University of Architecture &Technology;2.Xi'3.'4.an University of Architecture &5.Technology)
摘要
图/表
参考文献
相似文献
本文已被:浏览 62次   下载 60
投稿时间:2019-03-21    修订日期:2019-05-22
中文摘要: 为提高充填管道失效风险的预测精度,建立了基于粗糙集(RS)和正余弦(SCA)算法优化投影寻踪回归(PPR)的充填管道失效风险预测模型。以某矿山为例,选取10项影响因素构建充填管道失效风险预测指标体系,通过RS属性约简原理提取5项核心因素,再利用PPR对充填管道失效风险进行预测,并采用SCA对模型参数进行优化。结果表明:RS可有效消除冗余信息,简化运算过程,SCA-PPR预测精度高、模型性能好,拓宽了矿山充填管道失效风险预测研究的思路。
Abstract:In order to improve the precision of failure risk prediction of filling pipeline, a filling pipeline failure risk prediction model based on rough set (RS) and sine cosine algorithm(SCA) was established to optimize projection pursuit regression (PPR). Taking a specific mine as an example, ten influencing factors were selected to construct the failure risk prediction index system of filling pipeline. Five core factors were extracted by RS attribute reduction principle, then PPR was used to forecast the filling pipeline failure risk, and SCA was used to optimize the model parameters. The results show that the RS can effectively eliminate redundant information to simplify the operation process. SCA-PPR model has a higher prediction accuracy and better model performance, which broadens the thinking of mine filling pipeline failure risk prediction research.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金资助;陕西省社科基金项目
引用文本:
骆正山,姚梦月,王小完.基于RS-SCA-PPR的充填管道失效风险预测精度研究[J].有色金属工程,2020,(1):87-94.

我们一直在努力打
造,精品期刊,传
播学术成果

全国咨询服务热线
86-10-63299224

杂志信息

期刊简介

相关下载

联系我们

电话:86-10-63299224/63299153

传真:010-63299754

QQ:XXXXXXX

Email:ysjsgc@bgrimm.com

邮编:100160

地址:北京市南四环西路188号总部基地十八区23号楼

关注微信公众号