###
DOI:
有色金属工程:2021,(1):-
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
生物氧化预处理过程中溶氧量的预测研究
(新疆大学)
Study on The Prediction of Dissolved Oxygen during The Biological Oxidation Pretreatment Process
GaoXuan1,2,3,4,5
(1.Biological oxidation pretreatment;2.Dissolved oxygen;3.Whale algorithm (WOA);4.Least squares support vector machine (LSSVM);5.Prediction)
摘要
图/表
参考文献
相似文献
本文已被:浏览 151次   下载 154
投稿时间:2020-06-08    修订日期:2020-06-17
中文摘要: 溶氧量作为影响生物氧化速率的重要因素之一,精准地预测溶氧量对生物氧化冶金工艺有着十分重要的意义,为提高模型预测的精度,本文提出一种基于鲸鱼算法-最小二乘支持向量机(WOA-LSSVM)的矿浆溶氧量预测建模方法,用鲸鱼算法对最小二乘支持向量机的核函数宽度和惩罚因子进行寻优,然后建立WOA-LSSVM溶氧量预测模型,最后输出预测结果,并与LSSVM和(粒子群算法)PSO-LSSVM模型对比。研究表明,WOA-LSSVM模型的预测结果更接近于实际值,其相对误差也比另外两种模型低,该模型可以很好地预测溶解氧,具有预测精度高的优势,可应用于之后对于溶氧量的预测研究。
Abstract:As one of the important factors influencing the rate of biological oxidation, dissolved oxygen content is very important for the biological oxidation metallurgy process. To improve the accuracy of model prediction, this paper proposes a whale algorithm-based least square support Vector machine (WOA-LSSVM) predictive modeling method for dissolved oxygen content of pulp, the whale algorithm is used to optimize the kernel function width and penalty coefficients of the least-squares-supported vector machine, the WOA-LSSVM dissolved oxygen prediction model is established and finally the prediction results are output and compared with LSSVM and (particle swarm optimization) PSO-LSSVM model. According to the study results, the predicted results of the WOA-LSSVM model are closer to the actual values and the relative error is lower than the other two models, this model can predict dissolved oxygen well, and has the advantage of high prediction accuracy, which can be applied to the future research on the prediction of dissolved oxygen.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金项目(面上项目,重点项目,重大项目)
作者单位E-mail
高轩 新疆大学 1506738706@qq.com 
引用文本:
高轩.生物氧化预处理过程中溶氧量的预测研究[J].有色金属工程,2021,(1):.

我们一直在努力打
造,精品期刊,传
播学术成果

全国咨询服务热线
86-10-63299224

杂志信息

期刊简介

相关下载

联系我们

电话:86-10-63299224/63299153

传真:010-63299754

Email:ysjsgc@bgrimm.com

邮编:100160

地址:北京市南四环西路188号总部基地十八区23号楼

关注微信公众号